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Abstract
In this paper, we introduce the infinite-dimensional flag varieties associated
with integrable systems of the KdV- and Toda-type and discuss the structure
of these manifolds. As an example we treat the Fubini–Study metric on
the projective space associated with a separable complex Hilbert space and
conclude by showing that all flag varieties introduced before possess a Kähler
structure.
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1. Introduction

Apart from the fact that flag varieties play a central role in the representation theory of Lie
groups, they are also prominent geometric objects in various parts of mathematical physics.
In the finite dimensional case, e.g., a double fibration of flag varieties is the central object in
the Penrose transform and its generalizations (see [BE89]).

For soliton equations of KdV-type, infinite dimensional Grassmannians form the
geometric structure, see e.g. [SS83, and [SW85], that yields solutions of these equations and
the towers of equations, so-called hierarchies, linked to them. Associated with these planes
are the so-called τ -functions in which the solutions of the soliton hierarchies can be expressed.
These functions can be given a geometric description in terms of the determinant bundle
over this variety. In the same context finite chains of subspaces in the Grassmann manifold
correspond to so-called modified equations of these hierarchies and to Darboux transformations
(see resp. [HH94] and [HvdL01a]). Infinite chains of subspaces occur naturally at Toda-type
hierarchies, as one can read off from, e.g., [AHvM93] and [FH91].

These varieties also turn up in quantum field theory. We mention a few instances.
For example, in quantum field theory in two space–time dimensions, the possible boundary
conditions for the Dirac operator give you a point in a Grassmannian (see [Wit88]). By using
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the structure of the determinant bundle over this variety, Witten arrived at so-called
multiplicative Ward identities. In [KNTY88], the relevant moduli spaces for conformal
field theories over Riemann surfaces were embedded in a Grassmannian, which enabled an
explicit calculation of a priori provided quantities, such as the current and energy–momentum
tensor, in terms of the moduli. Moreover, it led to a characterization of the image by a system
of differential equations for the corresponding τ -functions. From a Grassmannian description
of the theory Fukuma, Kawai and Nakayama deduced in [FKN92] the W1+∞-symmetry of
two-dimensional quantum gravity and obtained the reduction of the tower of constraints to the
lowest level. Also the conjectures of Witten that link the partition function of two-dimensional
quantum gravity to τ -functions of integrable hierarchies support the central character of this
geometric structure.

The foregoing examples underline the importance of a good knowledge of the structure
of infinite flag varieties. Here we present an analytic category of flags that contains
the Grassmann manifolds of all subspaces of a fixed finite dimension and that is at the same
time a natural extension of the Grassmannians from [SW85]. We describe their manifold
structure and show that they all possess a Kähler structure. This last fact can be used at the
Hamiltonian description of the integrable systems alluded to above.

The precise content of the various sections is as follows: the second section describes
the type of flags that we will consider and gives two infinite dimensional Lie groups that act
transitively on the space F of these flags. In the third section we present useful decompositions
of a number of open subsets in these Lie groups and the manifold structure of F. The connected
components of the variety F are described in the fourth section. Next we treat as an example
the Fubini–Study metric on projective Hilbert space. The final section is devoted to the
description of the Kähler structure on F.

2. The flag variety

First we will discuss the form of the flag varieties that will be considered. We start out with a
separable complex Hilbert space H equipped with an inner product 〈·, ·〉 and a decomposition

H =
⊕

−N−1<i<M+1

Hi where Hi ⊥ Hj for i �= j and Hi is closed. (1)

Here, as in the rest of this paper, the direct sum of a number of Hilbert spaces is meant
to be the Hilbert direct sum, as soon as it is infinite. This will be assumed from now
on without further mention. We have no restriction on the dimension of the spaces Hi ,
in other words mi = dim(Hi) satisfies 1 � mi � ∞. For convenience, we write
I = {j | −N − 1 < j < M + 1} for the collection of indices of the decomposition (1).
With respect to the decomposition (1) we consider for each i, i ∈ I, the subspace

H(i) =
⊕

−N−1<j�i

Hj (2)

and this gives rise to the so-called basic flag F (0), which will be the leading example of a flag
and which consists of the chain of subspaces

H(−N − 1) = 0 . . . ⊂ H(i − 1) ⊂ H(i) ⊂ . . . ⊂ H = H(M).

More generally, we consider inside H flags F = {F(i) | i ∈ I }, which is to say chains of
closed subspaces of H,

{0} = F(−N − 1) . . . ⊂ F(i) ⊂ F(i + 1) . . . ⊂ F(M) = H.
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With any such flag F is associated an orthogonal decomposition of H,

H =
⊕
i∈I

Fi where Fi = F(i) ∩ F(i − 1)⊥.

We will denote the flag F both by F = {F(i) | i ∈ I } as well as by F = {Fi | i ∈ I }. The
choice of the Hilbert space and the relevant decomposition depends on the process one wants
to describe as the following examples show.

Example 2.1. In quantum field theory the states of the system are vectors in a Fock space. In
the fermionic case, this space is built up from the splitting of a basic Hilbert space into positive
and negative energy states. For example, at the Dirac theory for a one-dimensional particle of
mass m � 0, one considers, see [CR87], the Dirac Hamiltonian

D =
(−i 0

0 −i

)
d

dx
+

(
0 m

m 0

)
.

It acts on the Hilbert space H = L2(R)2 and the relevant decomposition of H for the Fock
space representation is H = H+ ⊕ H−, where H+ is the subspace of H corresponding to the
positive spectrum of D and H− the one corresponding to the negative spectrum of D. In
general, see [Mick], Dirac operators are associated with a number of geometric data, such as a
spin bundle over an oriented Riemannian manifold, another vector bundle over this manifold
and a connection. A similar splitting of the square-integrable extended Dirac spinors is the
starting point for the construction of a representation of an extension of the group of gauge
transformations (see [Mick]).

Example 2.2. In the case of the KP-theory and its many subsystems, the relevant space H is
the Hilbert space

L2(S1, C) =
{∑

n∈Z

anz
n, an ∈ C,

∑
n∈Z

|an |2< ∞
}

with the inner product〈∑
n∈Z

anz
n

∣∣∣∣∣
∑
n∈Z

bnz
n

〉
=

∑
n∈Z

anb̄n.

Decompositions that play a role in this context can be described as follows: consider a
finite M and N and let s

¯
= (s−N , . . . , sM−1), where si ∈ Z and si+1 < si . Then we take the

basic flag defined by

H(i) =


∑
n�si

anz
n ∈ H


 −N � i � M − 1

which is complemented with H(−N − 1) = {0} and H(M) = H . For matrix versions of the
KP-hierarchy, one uses the Hilbert space L2(S1, C

n) with similar decompositions.
The class of flags under consideration here, have, first of all, the same length as the basic

flag F (0). Secondly, the components of the flag have the same ‘size’ as the corresponding
components of F (0), i.e. for all i, i ∈ I ,

dim(Fi) = dim(Hi)

and finally we require our flags not to differ too much from the basic flag. This last property is
specified in the definition below. Before that we introduce some notation. Let pi , i ∈ I , be the
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orthogonal projection of H onto Hi . Decomposition (1) induces also one for linear operators
on H.

Notation 2.3. If g belongs to B(H), the space of bounded linear operators from H to H, then
g = (gij ), i ∈ I and j ∈ I , denotes the decomposition of g w.r.t. the {Hi | i ∈ I }. That is
to say gij = pi ◦ g | Hj . If g ∈ B(H) and i0, i0 ∈ I, then we write suggestively g�i0 for∑

i�i0
pig | ⊕i�i0 Hi in B(⊕i�i0Hi) and g�i0 for

∑
i�i0

pig | ⊕i�i0 Hi in B(⊕i�i0Hi). Finally,
if we have operators ui ∈ B(Hi), i ∈ I , then we write

diag(ui) :=




. . .
. . .

. . .
. . .

. . .

. . . ui+2 0 0
. . .

. . . 0 ui+1 0
. . .

. . . 0 0 ui

. . .

. . .
. . .

. . .
. . .

. . .




.

Definition 2.4. Let F be the collection of flags F = {Fi | i ∈ I }, satisfying three properties.
First of all, the equality dim(Fi) = dim(Hi) should hold for all i ∈ I . Next the operator∑

i

∑
j �=i pj | Fi : H → H is required to be a Hilbert–Schmidt operator. Finally, the operator∑

i∈I pi | Fi in B(H) that maps each subspace Fi to Hi should be a Fredholm operator of
order zero. We call F the flag variety corresponding to the decomposition (1).

Remark 2.5. If there is only a finite number of components in the decomposition (1), then
these flag varieties are exactly the ones introduced in [HH94]. The need for infinite chains of
subspaces comes up naturally in the context of Toda-type hierarchies (see, e.g. [HvdL01b]).
If there is only a finite number of components and only one mi is infinite, then the Hilbert–
Schmidt condition is superfluous. Hence the present class of flag varieties includes both the
Grassmann variety Gr(k,H) of all k-dimensional subspaces of H as well as the Grassmann
variety Gr(H) introduced by Pressley and Segal in [PS86]. As is well known by now, this
last manifold is the Hilbert variety from which a rich collection of solutions for the KP-
hierarchy could be constructed. The flag varieties of finite length in this last category occur
naturally in the context of the KP-hierarchy when considering modified equations and Darboux
transformations (see, e.g., [HH94] and [HvdL01a]).

Remark 2.6. Since H = ⊕iHi = ⊕iFi , the condition that the operator
∑

i pi | Fi is Fredholm
of index zero implies that each pi | Fi is Fredholm and that the index of all but a finite number
of these Fredholm operators is zero.

Like the finite dimensional flag varieties the space F is also a homogeneous space for
several groups. First of all there is the analogue for F of the general linear group. Its Lie
algebra is formed by

Definition 2.7. A restricted endomorphism of H is a u = (uij ) in B(H) such that u−diag(uii)

is a Hilbert–Schmidt operator. We denote the space of all restricted endomorphisms of H by
Bres(H).

The algebra Bres(H) becomes a Banach algebra if we equip it with the norm ‖·‖2 defined
by

‖u‖2 = ‖u‖ +
∑
i �=j

‖uij‖HS
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where ‖.‖ denotes the operator norm and ‖.‖HS the Hilbert–Schmidt norm. If one chooses an
orthogonal basis {ek(i) | 0 � k < mi} of each Hi , then one can describe basic operators in
Bres(H) as follows: for each i and j , i ∈ I, j ∈ I , and all integers k and l, with 0 � k < mi

and 0 � l < mj , we define the operator E(k,i)(l,j) in Bres(H) by

E(k,i)(l,j)(et (s)) = δlt δjsek(i).

The {E(k,i)(l,j) | 0 � k < mi and 0 � l < mj } form a Hilbert basis of the space HS(Hj ,Hi)

of Hilbert–Schmidt operators from Hj to Hi .

Remark 2.8. The Lie algebra Bres(H) varies with the decomposition (1) one considers. It
is a significant enlargement of the Lie algebra HS(H,H) in order to have a wider range
of generators for the flows that preserve the manifold. An example of this situation is the
commuting flows for the KP-hierarchy from example (3.6).

As for graded properties of the Lie algebra Bres(H), it possesses various Lie subalgebras
such as loop algebras, e.g. that have a Z-grading with finite dimensional homogeneous
components, but none of them is dense in Bres(H), so that they are all significantly smaller
components of the algebra. This property can be seen from the fact that Bres(H) contains,
in general, subspaces that are the bounded linear operators on a Hilbert subspace of H.
Decomposition (1) induces a Z-grading only on a dense subalgebra of Bres(H) and as such it
does not fit into the category of Lie algebras as considered in [RS97] or [LS92]. Namely, if
we introduce for k ∈ I , the subspace

Bk := {b = (bij ) ∈ Bres(H), bij is non-zero only if j = i + k} (3)

and, if we put Bl = 0, for l ∈ Z − I , then

Bf in =
∑
k∈Z

Bk (4)

is a dense Z-graded Lie subalgebra of Bres(H).

The next step will be the introduction of the Lie group corresponding to Bres(H). If
GL(H) denotes the group of invertible elements in B(H), then we have

Definition 2.9. The restricted linear group, GLres(H), consists of the group of invertible
elements of Bres(H).

By definition GLres(H) is a natural Banach Lie group with Lie algebra Bres(H). From the
two facts that the Hilbert–Schmidt operators form a two-sided ideal inB(H) and that a bounded
operator is Hilbert–Schmidt as soon as the product of this operator with a Fredholm operator
is Hilbert–Schmidt, one deduces that the group GLres(H) is equal to GL(H) ∩ Bres(H).

Next we discuss a property of the group GLres(H) if N , M or both are infinite. If
g ∈ GLres(H), then g − diag(gii ) is Hilbert–Schmidt. Hence it is compact and therefore
diag(gii ) is a Fredholm operator of order zero. In particular, all the gii are Fredholm operators
and if M = ∞, resp. N = ∞, then there is an i0, resp. j0, such that for all i � i0, resp. all
j � j0, the operator gii , resp. gjj , is invertible. For M = ∞ and i tending to infinity, the
Hilbert–Schmidt norm of the off-diagonal part of g�i tends to zero and the same holds for
the off-diagonal part of g�j for j tending to −N − 1 = −∞. Since the operator norms of
the {gii | �i0} and {gjj | j � j0} are bounded away from zero, this leads to

Lemma 2.10. Let g ∈ GLres(H), where M, resp. N, is infinite. Then there exists an i0, resp.
j0, such that for all i � i0, resp. all j � j0, the operator g�i , resp. g�j , is invertible.

The analogue of the unitary group U(H) in this context is:
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Definition 2.11. The restricted unitary group, Ures(H) = GLres(H) ∩ U(H).

Both Ures(H) and GLres(H) are natural generalizations of the restricted unitary and
general linear group, introduced in chapter 6 of [PS86]. If A∗ denotes the adjoint of an
operator A ∈ B(H), then the Lie algebra of Ures(H) consists of

ures(H) = {X | X ∈ Bres(H), X∗ = −X}.
This is a real Lie subalgebra of Bres(H) and the Lie algebra Bres(H) can be written as

Bres(H) = ures(H) ⊕ iures(H).

In other words Bres(H) is the complexification of ures(H). On the group level this corresponds
to the fact that the group GLres(H) possesses a ‘polar decomposition’ of which Ures(H) forms
the unitary component. For, consider the sets

P(H) = {A | A ∈ GL(H),A = A∗ and A > 0} and Pres(H) = Bres(H) ∩P (H).

On Pres(H) we put the topology induced by Bres(H). Since the map A �→ √
A from Pres(H)

to P(H ) is locally given by a convergent power series in A, this map is in fact a continuous
map from Pres(H) to itself. Thus we get

Proposition 2.12. The map (u, p) �→ up from Ures(H) × Pres(H) to GLres(H) is a
homeomorphism.

Proof. The inverse of this map is

g �→ (g
√

g∗g
−1

,
√

g∗g)

and we have just seen that it is continuous. �

With each g ∈ GLres(H) we can associate the flag gF (0) given by

g(H(−N − 1)) = 0 ⊂ . . . ⊂ g

(⊕
j�i

Hj

)
⊂ . . . ⊂ g(H(M)) = H.

From the way the group GLres(H) is defined it is clear that this flag belongs to F.
The group Ures(H) acts already transitively on F. Let F = {Fi, i ∈ I } belong to F. From

the definition of F we know that there is for each i, i ∈ I , an isometry ui between Hi and Fi.
If we put u = ⊕iui , then the condition defining F implies that u belongs to the group Ures(H)

and that F = u(F 0).
The stabilizer in GLres(H) of the basic flag is the parabolic subgroup

P =




g =




. . .
. . .

. . .
. . .

. . .
. . .

. . . gmm . . . . . . gml

. . .

. . . 0
. . .

...
. . .

. . .
...

. . .
. . .

...
. . .

. . . 0 . . . 0 gll

. . .

. . .
. . .

. . .
. . .

. . .
. . .




∈ GLres(H), with gii ∈ GL(Hi) for all i




.

Since the group Ures(H) also acts transitively on F and the stabilizer of the basic flag in this
group is

P ∩ Ures(H) = {u | u ∈ Ures(H), u = diag(uii), with uii ∈ U(Hi)}
one can see F both as GLres(H)/P and as Ures(H)/P ∩ Ures(H).
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Let τ : GLres(H) → F be the projection τ (g) = gF (0). On F we will put a Hilbert
manifold structure that makes τ into an open submersion. This will be discussed in the next
section.

3. The manifold structure

In this section we discuss the Hilbert manifold structure on F and some decompositions of
open subsets in GLres(H). From the definition of the parabolic group P one sees directly that
the Lie algebra of P is given by

L(P) = {g | g = (gij ) ∈ Bres(H), gij = 0 for all i < j }
and that a complement of L(P) in Bres(H) is the Hilbert space (E, ‖ · ‖HS) with

E =
⊕
i∈I
i<j

HS(Hj ,Hi).

From section 6.1 in [Bou98], we know then that the homogeneous space F = GLres(H)/P

carries an analytic E-manifold structure for which τ is a submersion and for which the action
Lg of g ∈ GLres(H) on F by left translation is analytic.

Next we give descriptions of some open subsets in GLres(H) that will be needed later
on and occur also at the construction of solutions of related integrable systems. Consider for
each k, k ∈ I , the set �(�k) in GLres(H) given by

�(�k) =



g ∈ GLres(H) | g�i =




. . .
. . .

. . .
. . .

. . . grr . . . gri

. . .
...

...

. . . gir . . . gii




∈GLres(⊕j�iHj ) for all i � k




and its counterpart �(�k) defined by

�(�k) =



g ∈ GLres(H) | g�i =




gii . . . gir

. . .

...
...

. . .

gri . . . grr

. . .

. . .
. . .

. . .
. . .




∈GLres(⊕j�iHj ) for all i � k




.

Further we use the notation �+(H), resp. �−(H), for the intersection of all members of each
collection, i.e.

�+(H) = �+ :=
⋂
k∈I

�(�k) and �−(H) = �− :=
⋂
k∈I

�(�k).

By using lemma 2.10 and the fact that the invertible operators are open in the space of Fredholm
operators one sees that the sets �(�k), �(�k),�+ and �− are open and we discuss here their
decomposition in terms of subgroups of GLres(H). Inside this group we introduce the Lie
subgroups U−(�k) and P(�k) defined by, respectively,
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U−(�k) =

g = (gij ) ∈ GLres(H)

∣∣∣∣∣∣
gii = IdHi

for all i

gij = 0 for i > j

gij = 0 for i < j and j < k




P(�k) = {g = (gij ) ∈ GLres(H) | gij = 0 if i < j and j � k}.
If u ∈ U−(� k) and p ∈ P(� k) and g = up, then it is a direct verification that for all l � k

there holds g�l = u�lp�l , hence g belongs to �(�k). The union of all the groups U−(�k)

is again a group and we denote it as follows:

U− = U−(H) =
⋃
k∈I

U−(�k).

For the counterpart �(�k) we introduce similarly the groups U−(�k) and P(�k) given by

U−(�k) =

g = (gij ) ∈ GLres(H)

∣∣∣∣∣
gii = IdHi

for all i

gij = 0 for j < i

gij = 0 for i < j and i > k




and

P(�k) = {g = (gij ) ∈ GLres(H) | gij = 0 if i < j and i � k}.
If we take now a u ∈ U−(� k) and p ∈ P(� k) and put g = pu, then there holds for all
l � k that g�l = p�lu�l . Hence g belongs to �(�k). Clearly P(�k) ∩ U−(�k) = {IdH } =
P(�k) ∩ U−(�k) and this gives you the injectivity of both the following maps.

Proposition 3.1. The map (u, p) �→ up from U−(�k) × P(�k) → GLres(H) determines
a homeomorphism between U−(�k) × P(�k) and �(�k). Likewise, the map (p, u) �→ pu

from P(�k) × U−(�k) → GLres(H) is a homeomorphism between P(�k) × U−(�k) and
�(�k).

Proof. We merely have to reconstruct in an analytic way for an element g ∈ �(�k), resp.
�(�k − 1), the elements u1 ∈ U−(�k) and p1 ∈ P(�k), resp. u2 ∈ U−(�k − 1) and
p2 ∈ P(�k − 1), such that g = u1p1, resp. g = p2u2. First we decompose these elements
w.r.t. H = (⊕j�kHj ) ⊕ (⊕j<kHj), respectively, as follows:

g =
(

g�k g>(k)

g<(k) g�k−1

)
=

(
Id 0

g<(k)g−1
�k Id

)(
g�k g>(k)

0 g�k−1 − g<(k)g−1
�kg>(k)

)

g =
(

g�k g>(k)

g<(k) g�k−1

)
=

(
g�k − g>(k)g−1

�k−1g<(k) g>(k)

0 g�k−1

)(
Id 0

g−1
�k−1g<(k) Id

)
.

This reduces the problem for �(� k) to decomposing an element g̃ := g�k ∈ �+(⊕j�kHj )

as g̃ = ũp̃, where ũ ∈ U−(⊕j�kHj ) and p̃ ∈ P(⊕j�kHj ) and for �(� k − 1) to the
decomposition of an element ĝ := g�k−1 ∈ �−(⊕j<kHj) as ĝ = p̂û, where û ∈ U−(⊕j<kHj)

and p̂ ∈ P(⊕j<kHj). Each of these decompositions is found by a step by step procedure,
where we use the decomposition of g̃ w.r.t. ⊕j�kHj = (⊕j>kHj) ⊕ Hk and that of ĝ w.r.t.
⊕j�k−1Hj = Hk−1 ⊕ (⊕j<k−1Hj) given by

g̃ =
(

g�k+1 g+

g− gkk

)
=

(
Id 0

g−g−1
�k+1 Id

)(
g�k+1 g+

0 gkk − g−g−1
�k+1g+

)

ĝ =
(

gk−1k−1 g2

g1 g�k−2

)
=

(
gkk − g2g

−1
�k−2g1 g2

0 g�k−2

)(
Id 0

g−1
�k−2g1 Id

)
.
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Continuing in this fashion this procedure finishes for �(�k), resp. �(�k), in a finite number of
steps if and only if M < ∞, resp. N < ∞, and yields then the required decomposition. In the
infinite case the increasing product of elements in U−(⊕j�kHj ), resp. U−(⊕j<kHj), converges
to an element in these groups respectively, since the operator norms of the {g�l , l � k} and
{g�l , l < k} are bounded away from zero and the sum over the Hilbert–Schmidt norms of the
off-diagonal components is finite. This proves the lemma. �

Next we consider the open subsets �+ and �−. From the foregoing results it follows that
U−P ⊂ �+ and PU− ⊂ �−. Note that we have already shown equality here in the cases that
M or N is finite. So what remains is the case M = N = ∞. To show equality in this case, we
take a g ∈ �+ and an h ∈ �−. Thanks to proposition 3.1 we may assume that g ∈ P(� k)

and h ∈ P(�k − 1). These operators are then reduced to the required form again by a step by
step procedure. For, decompose both operators w.r.t. H = (⊕j�kHj ) ⊕Hk−1 ⊕ (⊕j<k−1Hj),
then we have respectively

g =

g�k ∗ ∗

0 gk−1k−1 ∗
0 p4 ∗


 =


Id 0 0

0 Id 0
0 p4g

−1
k−1k−1 Id





g�k ∗ ∗

0 gk−1k−1 ∗
0 0 ∗




h =

 ∗ ∗ ∗

q2 hk−1k−1 ∗
0 0 h�k−2


 =


∗ ∗ ∗

0 hk−1k−1 ∗
0 0 h�k−2





 Id 0 0

h−1
k−1k−1q2 Id 0

0 0 Id


 .

Continuing in this fashion one finds all the components of the U−-component of g, resp. h,
which are the limits of the increasing products of elements in U− due to the step by step
procedure. Their convergence is based on the same argument as above. We thus have found a
Gauss-type decomposition for the sets �+ and �− and resum this result in a

Corollary 3.2. Inside GLres(H), we have U−P = �+ and PU− = �−. In particular we see
that �+ = �−1

− .

From this corollary it follows that the restriction of τ to U− gives a diffeomorphism
u �→ uF (0) between U− and the open neighbourhood τ (�+) of F (0). Clearly the group U−
is diffeomorphic to the Hilbert space E. Note that from the definition of �+ one can conclude
directly that

τ (�+) =

F = (Fi) ∈ F

∣∣∣∣ ⊕
j�l

pj :
⊕
j�l

Fj →
⊕
j�l

Hj is a bijection for all l ∈ I


 .

This characterization of τ (�+) tells you how to choose around a general point of F a concrete
neighbourhood diffeomorphic to E. This requires, however, the introduction of the following
notation.

Notation 3.3. If W is a closed subspace of H, then we denote the orthogonal projection on W

by pW .

Consider a F = (Fi) in F. Then the analogue of τ (�) for F is

UF =

V = (Vi) in F

∣∣∣∣ ⊕
i�l

pFi
:
⊕
i�l

Vi →
⊕
i�l

Fi is a bijection for all l ∈ I


 .
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Since F = Ures(H)F (0), we have for all F and G in F that the map
∑

j

∑
i �=j pFi

| Gj is a
Hilbert–Schmidt operator. Hence, if V belongs to UF, then there is a unique operator A in⊕

i∈I
i<j

HS(Fj , Fi) such that for all i,−N − 1 � i � M + 1,

V (i) = {x + A(x) | x ∈ F(i)}.
This is why we call V also the graph of A and write V = graph (A).

It is convenient to have a special name for the flags in UF.

Definition 3.4. A flag V in UF is called transversal to F.

Let gF be an element of Ures(H) such that gF F (0) = F . Instead of the big cell �+ in
GLres(H) with respect to the decomposition H = ⊕iHi , we could also have introduced a big
cell with respect to H = ⊕iFi and it will be clear that this set can be written as

gF U−P
(
g−1

F

)
.

Consequently, we get for UF that

UF = {
gF up(gF )−1F | with u ∈ U− and p ∈ P

} = τ (gF U−P).

Then we can define for each F in F a diffeomorphism ϕF : UF → E by

ϕF

(
gF uF (0)

) = u − Id.

Each (UF , ϕF ) is a concrete chart around F for the E-manifold structure on F.
We have now obtained a concrete description of the manifold structure on F:

Proposition 3.5. The (UF , ϕF ) are the charts of the analytic E-manifold structure on F.

Proof. It is sufficient to show for each UF(1) and UF(2) with UF(1) ∩ UF(2) �= ∅ that

ϕF(2) ◦ ϕ−1
F (1) : ϕF(1) (UF (1) ∩ UF(2) ) → ϕF(2) (UF (1) ∩ UF(2) )

is an analytic map. From the step by step decomposition described in proposition 3.1 it follows
that the U−-component of (gF (2) )−1gF(1)u actually depends analytically on u. This proves the
proposition. �

We conclude this subsection by describing the role the flag varieties corresponding to the
example 2.2 play for the KP-hierarchy and its subsystems.

Example 3.6. Recall that the KP-hierarchy consists of a tower of nonlinear differential
equations in infinitely many variables {tn | n � 1}. It is named after the simplest nontrivial
equation in this tower, the Kadomtsev–Petviashvili equation:

3

4

∂2u

∂t2
2

= ∂

∂t1

(
∂u

∂t3
− 3u

∂u

∂t1
− 1

4

∂3u

∂t3
1

)
(5)

which is a two-dimensional generalization of the KdV-equation. We consider solutions of
these equations that belong to a commutative ring of functions R, which is stable under the
operators ∂n = ∂

∂tn
. The compact form in which one usually presents the equations of the

hierarchy, is the so-called Lax form. This is an equality between operators in the privileged
derivation ∂ = ∂1 of a specific nature. This simple way to present the equations requires that
one extends the ring R[∂] = {∑n

i=0 ai∂
i
∣∣ ai ∈ R

}
and adds suitable integral operators to the

ring. Then it becomes possible to take the inverse and roots of certain differential operators.
For example, the square root L 1

2 of the Schrödinger operators L = ∂2 + 2u is well defined
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in this extension. Thus one arrives at the ring R[∂, ∂−1) of pseudodifferential operators with
coefficients in R. It consists of all expressions

N∑
i=−∞

ai∂
i ai ∈ R for all i

that are added in an obvious way and multiplied according to

∂j ◦ a∂i =
∞∑

k=0

(
j

k

)
∂k(a)∂i+j−k.

Each operator P = ∑
pj∂

j decomposes as P = P+ + P− with P+ = ∑
j�0 pj∂

j its
differential operator part and P− = ∑

j<0 pj∂
j its integral operator part. An operator

L ∈ R[∂, ∂−1) of the form

L = ∂ +
∑
j<0

�j∂
j �j ∈ R for all j < 0 (6)

carries the name Lax operator. We call a Lax operator a solution of the KP hierarchy if and
only if it satisfies the system of equations

∂n(L) =
∑
j<0

∂n(�j )∂
j = [(Ln)+, L] n � 1. (7)

They are called the Lax equations for L. As such they are a generalization of the so-called Lax
equations of the mth Gelfand–Dickey hierarchy, which is the following system of equations
for a differential operator L = ∂m +

∑
i�m−2 li∂

i in R[∂],

∂n(L) = [(
L

n
m

)
+,L

]
n � 1. (8)

For example, for m = 2 this operator L will be the Schrödinger operator ∂2 + 2u and the
case n = 3 of the Lax equations (8) is then equivalent to the property that u is a solution of
the KdV-equation. A similar situation occurs in the KP-case. First one shows that the Lax
equations of the KP-hierarchy are equivalent to the following infinite set of conditions for the
Lax operator L:

∂n(L
m)+ − ∂m(Ln)+ = [(Ln)+, (L

m)+] m,n � 1. (9)

The case n = 3 and m = 2 of the system (9) implies then that the coefficient �−1 of L is a
solution of the KP-equation.

The equations of the KP-hierarchy possess a rich collection of solutions besides the
trivial one L = ∂ . In [SW85], they considered the Hilbert space from example 2.2 with the
decomposition corresponding to s

¯
= (0). On the associated Grassmann manifold Gr(H) acts

the group of the commuting flows

�+ =

γ (t) := exp


∑

i�1

tiz
i



∣∣∣∣∣∣ ti ∈ C,

∑
i�1

|ti|Ni < ∞ for some N > 1


 .

By transferring an arbitrary plane W in Gr(H) with this group �+ into the open cell �+ and
using the Gauss decomposition from corollary 3.2, they constructed for each W in Gr(H) a
solution LW of the KP-hierarchy. We will refer to this set of solutions of the KP-hierarchy
as the Segal–Wilson class. The coefficients of the Lax operators thus constructed turned out
to be meromorphic functions on the group �+. Besides the construction of this extensive
class of solutions, Segal and Wilson also gave a geometric characterization of the solutions in
Gr(H) that are the mth root of a monic differential operator of order m, i.e. solutions of the
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mth Gelfand–Dickey hierarchy. These are precisely the planes W satisfying zmW ⊂ W . A
geometric description of a generalization of this subsystem, the so-called vector constrained
KP-hierarchy, was given in [HvdL98]. Similar constructions can be made for other groups of
commuting flows (see, e.g., [HP93]).

Note that, if L is a Lax operator in R[∂, ∂−1), then for all monic P in R[∂] the operator
PLP−1 is again a Lax operator. In view of the foregoing results a natural question is:
given a solution L in R[∂, ∂−1) of the KP-hierarchy in the Segal–Wilson class, determine
operators P in R[∂] such that LP = PLP−1 belong again to the Segal–Wilson class and
describe these transformations geometrically in the context of the Grassmanian. This type of
transformation for Schrödinger operators already occurred in the work of Darboux. Therefore
these transformations and their inverses carry his name. The raised question was settled in
[HvdL01a]. There it was shown that if V and W belong to Gr(H) and V is a subspace of
codimension n in W , then there is an explicit monic different operator P in R[∂] such that

LV = PLW P−1.

In other words, the flag variety corresponding to s
¯

= (n, 0) describes the Darboux
transformations of order n. Moreover, refinements of these flags, i.e. chains looking like
the basic flag of type s

¯
= (n, . . . si . . . , 0), correspond to specific decompositions of the

differential operator P. Similar questions can be raised for the subsystems mentioned above,
we refer to [HvdL01a] for the answer.

4. The connected components of GLres(H)

Let g = (gij ) be an element of GLres(H). Recall that we have shown already that all diagonal
components gii of g are Fredholm operators. The collection of Fredholm operators on a
Hilbert space K is an open part of the space B(K). Its connected components are given by the
index, which is defined as

ind(B) = dim(ker(B)) − dim(coker(B))

where B is a Fredholm operator on K. Since the off-diagonal part of g is Hilbert–Schmidt and
hence compact, the operator diag(gII ) is a Fredholm operator of index zero. Moreover, we
saw in lemma 2.10 that for sufficiently large |i| the gii are invertible. Hence we have that the
indices of the {gii | i ∈ I } satisfy∑
i∈I

ind(gii ) = 0 and ind(gkk) = 0 if mk < ∞ or |k| � 0.

These relations lead to the introduction of the subgroup Z of Z
I defined by

Z =
{

z = (zi) ∈ Z
I

∣∣∣∣∣
∑
i∈I

zi = 0, zk = 0 if mk < ∞ or |k| � 0

}
.

On Z we take the discrete topology. The standard properties of the index imply that the map
i : GLres(H) → Z,

g �→ {ind(gii )}
is a continuous group homomorphism. Hence the sets

GL(z)
res(H) = {g | g ∈ GLres(H), i(g) = z} with z ∈ Z

are open. In fact, they are exactly the connected components of GLres(H), for

Proposition 4.1. For each z ∈ Z, the set GL(z)
res(H) is non-empty and connected.
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Proof. Let z = (zi) be in Z. To see that GL(z)
res(H) is non-empty, one has to consider only

a finite number of the components {Hi}, since only a finite number of the {zi} are nonzero.
That case has been shown in [HH94] and by extending the operator found there with the
identity, one obtains an element in GL(z)

res(H). As for the connectedness it suffices to show
that GL(0)

res (H) is connected. First one notes that, since P is homeomorphic to∏
i∈I

GL(Hi) ×
∏
j<i

HS(Hj ,Hi)

and all the GL(Hi) are connected (see [Kui65]), the group P is connected. If we can show
that each element of GL(0)

res (H) can be joined by a continuous path to an element of P,
then this proves that GL(0)

res(H) is connected. Also this we reduce to the case of a finite
number of components {Hi}, which has been treated in [HH94]. Assume M = ∞, if it were
finite then one can proceed directly to the second step in the following reduction. For any
element g ∈ GL(0)

res (H) we know from lemma 2.10 that there is a sufficiently large k0 such that
g ∈ �(�k0). Hence g = up ∈ U−(�k0)P (�k0). Then the map t �→ {Id +(1− t)(u−Id)}p
joins g with p. If N is finite, then we have w.r.t. H = (⊕j�k0Hj) ⊕ (⊕j<k0Hj)

p =
(

p�k0 ∗
0 g�k0−1

)
where g�k0−1 ∈ GL(0)

res (⊕−N−1<j<k0Hj).

According to [HH94], the element g�k0−1 is linked by a continuous path with a
p(k0) ∈ P(⊕−N−1<j<k0 Hj) and we are done. If N = ∞, then there is a sufficiently small l0
such that p ∈ �(� l0). Decomposing p w.r.t. H = (⊕j�k0Hj) ⊕ (⊕l0<j<k0Hj) ⊕ (⊕j�l0Hj),

results in

p =

p�k0 ∗ ∗

0 g(0) ∗
0 p(1) p�l0


 =


p�k0 ∗ ∗

0 g(0) ∗
0 0 p�l0





Id 0 0

0 Id 0
0 p−1

�l0
p(1) Id


 =: p1u1.

The map t �→ p1{Id + (1 − t)(u1 − Id)} links p with p1. From proposition 3.1, we know
that p�l0 = p(2)u(2), with p(2) ∈ P(⊕j�l0 Hj) and u(2) ∈ U−(⊕j�l0Hj). Hence we can
decompose p1 further as

p1 =

p�k0 ∗ ∗

0 g(0) ∗
0 0 p�l0


 =


p�k0 ∗ ∗

0 g(0) ∗
0 0 p(2)





Id 0 0

0 Id 0
0 0 u(2)


 =: p2u2.

By shrinking u2 to the identity as we did before with similar operators, one links p1

continuously with p2. From [HH94] we know that g(0) can be linked to a p(0) ∈
P(⊕l0<j<k0Hj) and this concludes the proof of the proposition. �

This proposition is the extension to flag varieties of proposition 6.2.4 in [PS86].
Since the parabolic group P is connected, we see that

Corollary 4.2. The connected components of F are given by

F(z) = {
gF (0)

∣∣ g ∈ GL(z)
res(H)

}
z ∈ Z.

Remark 4.3. Let H be the Hilbert space from example 2.2. Then the connected components
of Gr(H) are labelled by the integers. It is clear that for each m ∈ Z and each W ∈ Gr(n)(H),
the space zmW belongs to Gr(n−m)(H). The construction method in [SW85] of solutions of
the KP-hierarchy is such that we have LW = LzmW . Hence, for the set of solutions one could
restrict to one component, but at Darboux considerations the other components are needed
as well.
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Example 4.4. Again we take the Hilbert space from example 2.2 and consider the
Grassmannian Gr(H). If we have for each n ∈ Z a plane Wn ∈ Gr(n)(H) and if these
subspaces form an infinite flag

· · · ⊂ Wn−1 ⊂ Wn ⊂ Wn+1 ⊂ Wn−2 ⊂ · · · (10)

then we know from [HvdL01b] that this renders a solution of the 1-Toda lattice hierarchy.
There it is also shown that an infinite chain

· · · ⊂ Wn−1 ⊂ Wn ⊂ Wn+1 ⊂ · · · W0 =


∑
n�0

anz
n ∈ H




yields systems of orthogonal polynomials occurring in matrix models. This illustrates that
infinite flags are important as well.

5. The Fubini–Study metric

In this section we take the example of projective Hilbert space P
1(H), i.e. the manifold of

all complex lines in H, and equip it with a Kähler structure that is the analogue of the finite
dimensional case and for which its expression in local coordinates is not a notational disaster.
Let H be

H =



∞∑
i�0

αiei

∣∣∣∣∣∣
∞∑

i�0

|αi |2 < ∞

 . (11)

As the orthogonal decomposition corresponding to P
1(H) we take

H = {α0e0, α0 ∈ C} ⊕
{ ∞∑

i>0

αiei ∈ H

}
:= H0 ⊕ H1. (12)

Each
∑∞

i�0 αiei �= 0 in H determines an element of P
1(H) that we denote by [αi]. The space

P
1(H) is covered by the open subsets Uj , j � 0, given by

Uj = {[αk], αj �= 0}.
The local complex coordinates on Uj are the zk(j) = xk(i) + iyk(j) := αk

αj
, k �= j and instead

of the real ones xk(j), yk(j), k �= j, it is convenient to take the zk(j) and zk(j), k �= j . For
s �= j , we have on Uj ∩ Us that

zk(s) = zk(j)

zs(j)
for k �= s and k �= j zj (s) = 1

zs(j)
.

This defines the biholomorphic coordinate transformation ϕs,j on Uj ∩ Us . On each Uj we
have the vector fields

∂

∂zk(j)
:= 1

2

(
∂

∂xk(j)
− i

∂

∂yk(j)

)
and

∂

∂zk(j)
:= 1

2

(
∂

∂xk(j)
+ i

∂

∂yk(j)

)
.

Hence any vector field X on Uj can be written as

Xu =
∑
k �=j

ak(u)
∂

∂xk(j)
+ i

∑
k �=j

bk(u)
∂

∂yk(j)
=

∑
k �=j

αk(u)
∂

∂zk(j)
+
∑
k �=j

αk(u)
∂

∂zk(j)
(13)

where αk(u) = ak(u)+ibk(u). Since P
1(H) is a complex manifold, it has a canonical complex

structure J that satisfies in each u ∈ Uj

Ju

(
∂

∂xk(j)

∣∣∣∣
u

)
= ∂

∂yk(j)

∣∣∣∣
u

and Ju

(
∂

∂yk(j)

∣∣∣∣
u

)
= − ∂

∂xk(j)

∣∣∣∣
u

. (14)
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We have seen that in each u ∈ Uj the
{

∂
∂zk(j)

∣∣
u

and ∂

∂zk(j)

∣∣
u
, k �= j

}
form a Hilbert basis

of the tangent space at u considered as a real Hilbert space. Dual to these derivations are
the elements (dzk(j))u and (dzk(j))u in the cotangent space at u, giving rise to the sections
dzk(j), resp. dzk(j), of the complexified cotangent bundle T ∗F ⊗ C over Uj . The first
span the subspace T 1,0 of complex-linear cotangent vectors and the second the space T 0,1 of
complex-antilinear cotangent vectors. This splitting of the complex-valued 1-forms on Uj

also extends to the complex-valued k-forms �k(Uj , C) on Uj . They are a direct sum of the
spaces �(l,m)(Uj , C), l + m = k, of differential forms of type (l,m), which are by definition
the sections of the (
lT 1,0) ∧ (
mT 0,1). By composing the exterior derivative d with the
projections on the factors (
lT 1,0) ∧ (
mT 0,1), one gets the operators ∂ and ∂̄

∂ : �(l,m)(Uj , C) → �(l+1,m)(Uj , C) and ∂̄ : �(l,m)(Uj , C) → �(l,m+1)(Uj , C)

that are on the level of C∞-functions given by

∂(f ) =
∑
k �=j

∂

∂zk(j)
(f ) dzk(j) and ∂̄(f ) =

∑
k �=j

∂

∂zk(j)
(f ) dzk(j).

The sum of the operators ∂ and ∂̄ is equal to the exterior derivative and they share with the
exterior derivative the property ∂2 = 0 = ∂̄2. Therefore they satisfy ∂̄∂ = −∂∂̄ . On each Uj

we have the function

Kj([αs ]) := ln


∑

k �=j

|zk(j)|2 + 1


 = ln


∑

k �=j

zk(j)zk(j) + 1


 =: ln(Vj ).

On the intersection Uj ∩ Us these functions are linked by the relation

ϕ∗
s,jKs = Ks ◦ ϕs,j = Kj − ln

(|zs(j)|2) = Kj − ln zs(j) + ln zs(j) mod 2π iZ. (15)

To Kj is associated the (1, 1)-form ωj on Uj given by

ωj := i∂∂̄(Kj ) = i
∑
k �=j
r �=j

∂2Kj

∂zk(j)∂zr(j)
dzk(j) ∧ dzr(j)

= i
∑
k �=j
r �=j

δkrVj − zr(j)zk(j)

V 2
j

dzk(j) ∧ dzr(j). (16)

Next we use the fact that the pullback by the holomorphic map ϕs,j commutes with ∂ and ∂̄

and we insert relation (15) to get

ϕ∗
s,jωs = i∂∂̄ϕ∗

s,jKs = i∂∂̄Kj = ωj . (17)

Hence the {ωj } compose to a global (1, 1)-form ω on P
1(H). The form ω is closed, for locally

on Uj we have

dω = (∂ + ∂̄)ω = i(∂ + ∂̄)(ωj ) = i(∂ + ∂̄)∂∂̄Kj = 0 + i∂̄∂∂̄Kj = −i∂∂̄2Kj = 0.

From the local formula one deduces directly that for all vector fields X and Y , there holds
ω(JX, JY ) = ω(X, Y ), i.e. J is compatible with ω. With ω we also associate a metric g.
For two vector fields X and Y it is given by g(X, Y ) = ω(X, JY ). To see that it is positive
definite, we decompose a vector field X locally on Uj as in formula 13, we write α(u), resp.
z, for the sequences {αk(u)}, resp. {zk(j)}, and use the notation

〈(γk), (δk)〉j :=
∑
k �=j

γkδ̄k
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for square summable sequences. Then we get that for a nonzero vector field X

ω(X, JX) =
∑
k �=j
r �=j

δkrVj − zr(j)zk(j)

V 2
j

αk(u)αr(u) dzk(j) ∧ dzr(j)

= 〈α(u), α(u)〉j (1 + 〈z, z〉j ) − 〈α(u), z〉j 〈z, α(u)〉j > 0 (18)

because of the Cauchy–Schwarz inequality. This metric we call, analogously to the finite
dimensional case, the Fubini–Study metric on projective Hilbert space, Thus we have put a
Kähler structure on P

1(H) and one way to proceed in the general case, would be to make a
complex embedding of F into some P

1(H). This would require the construction of holomorphic
line bundles over F with sufficiently many global sections. This approach is too cumbersome
and we will present a more direct one in the next section. We conclude with an example from
the KP-theory, where these homogeneous coordinates in a Hilbert space play a role.

Example 5.1. For the Hilbert space from example 2.2 we consider the Grassmannian Gr(H).
For n ∈ Z, let (n) = {m ∈ Z,m � −n}. If H(n) is the Hilbert span of the {zs | s ∈ (n)},
then it belongs to the componentGr(n)(H). Other basic examples in this component of Gr(H)

are the subspaces corresponding to subsets of Z comparable to (n). More precisely, consider

S(n) = { = (si) | si ∈ Z, i � −n, si+1 > si, si = i for i � 0} (19)

and let H be the Hilbert span of all the zs, s ∈ . All these spaces belong to Gr(n)(H).
For each  = (si) from S(n) we denote the orthogonal projection of H onto H by p and
write σ for the isomorphism between H(n) and H determined by σ(zi) = zsi , i � −n.
From the way Gr(H) is defined, one deduces that any plane W in Gr(n)(H) is the image of
an embedding w : H(n) �→ H , satisfying two properties. The first is that the component
w+ := p(n) ◦ w is of the form ‘identity + trace class’ so that det(w+) is well defined. The
second property is that the other component w− := (

Id − p(n)

) ◦ w is a Hilbert–Schmidt
operator. We denote the space of this type of embeddings by Pn. Two embeddings w1 and w2

in Pn have the same image if and only if w1 = w2 ◦ t with t in the group

Tn = {t ∈ Aut(H(n)) | t − Id is trace class}. (20)

Consider the product space Pn × C and the equivalence relation on it given by

(w1, λ1) ∼ (w2, λ2) ⇔ w1 = w2 ◦ t with t ∈ Tn and λ1 = λ2 det(t).

We denote the equivalence class of (w, λ) by [w, λ]. The quotient under this equivalence
relation defines the line bundle Det∗ over Gr(n)(H). Note that for each  = (si) ∈ S(n) we
have the holomorphic section

Image(w) �→ [
w, det

(
σ−1

 ◦ p ◦ w
)]

of this bundle. Now for each v and w ∈ Pn the operator v∗ ◦ w − Id is equal to
(v+)

∗w+ + (v−)∗w− − Id and thus is a trace-class operator. For the determinant of this
product of a Z × S(n)-matrix and a S(n) × Z-matrix we have a formula similar to that for the
product of an k × m-matrix and a m × k-matrix. There holds namely

det(v∗ ◦ w) =
∑

∈S(n)

det(v∗|H
◦ σ) det

(
σ−1

 ◦ p ◦ w
)
.

It can be derived by approximating w+ − Id and w− with operators with a finite dimensional
range. In particular, one sees that the sequence

(
det

(
σ−1

 ◦p ◦w
))

∈S(n)
belongs to �2(S(n))

and then one verifies that the map

W = Image of w �→ [(
det

(
σ−1

 ◦ p ◦ w
))]
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defines an embedding of Gr(n)(H) into the projective space of the Hilbert space �2(S(n)).
The homogeneous coordinates

(
det

(
σ−1

 ◦ p ◦ w
))

∈S(n)
are called the Plücker coordinates

of the plane W , as they are the analogue in the present setting of the finite dimensional notion.
The Plücker coordinates also turn up for the so-called τ -functions for the KP-hierarchy.

Solutions L of the KP-hierarchy are usually meromorphic expressions in a single τ -function
and its derivatives w.r.t. the privileged variable t1 and these functions are determined up to a
constant by L. For the solutions LW ,W ∈ Gr(H), we can describe them concretely. The
group �+ from example 3.6 acts on each component Gr(n)(H). If we decompose the action

of γ (t)−1 w.r.t. H = H(n) ⊕ H⊥
(n) as

(
a b

0 d

)
, then the τ -function associated with w ∈ Pn

is given by τw(γ (t)) := det(w+ + a−1bw−). The same formula for the determinant as above
gives the decomposition of τw

τw(γ (t)) := det(w+ + a−1bw−) =
∑

∈S(n)

det
(
σ−1

 ◦ p ◦ w
)
τσ

(γ (t)) (21)

in the τ -functions of the planes H, ∈ S(n). As shown in [SW85], these are the Schur
functions corresponding to the partition (i − si)i�−n.

6. The Kähler structure on F

Now that we know the manifold structure on F we can discuss its tangent bundle and put a
global Hermitian structure on it. Its imaginary part renders a global 2-form on F that can be
shown to be closed. Thus we will obtain the Kähler structure on F. Hence, here the positive
definiteness is automatic and the closedness requires a proof, while it was the other way around
in the foregoing section.

Since the exponential map is an analytic isomorphism from E to the group U−(H), we
also have the isomorphism

Y �→ exp(Y )F (0)

between E and the neighbourhood τ (�+) of F (0). In particular, we see that the small
perturbation of this map

Y �→ exp(Y − Y ∗)F (0) = {exp(Y − Y ∗) exp(Y ∗) exp(−Y )} exp(Y )F (0)

is an isomorphism from a neighbourhood of 0 in E to a neighbourhood V (0) of F (0) in F.
Moreover, the tangent space in F (0) can be identified with E by associating with each X ∈ E

the derivation

f �→ XF(0) (f ) := d

dt

∣∣∣
t=0

f
(

exp(tX)F (0)
)

where f stands for an arbitrary C∞-function around F (0). For each F = gF F (0) in F, with
gF ∈ Ures(H), a trivialization of the tangent bundle T F on the open set gF V (0) is given by

(gF exp(Y − Y ∗),X) �→ d
(
LgF exp(Y−Y ∗)

)(
F (0)

)
XF(0) . (22)

Since each exp(Y − Y ∗), Y ∈ E, belongs to Ures(H), we note that if we choose different
trivializations and have gF1 exp(Y1 − Y ∗

1 )F (0) = gF2 exp(Y2 − Y ∗
2 )F (0), then there holds

gF1 exp(Y1 − Y ∗
1 ) = gF2 exp(Y2 − Y ∗

2 )u with u = diag(uii)

with each uii ∈ U(Hi). Hence another choice of trivialization of the form 22 induces merely
the following transformation on E:

X �→ uXu−1 with u ∈ Ures(H) ∩ P.
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Consider now any point F = gF F (0) in F and two arbitrary elements XF and YF in the
tangent space T FF . They can, once that gF has been chosen, uniquely be written as
XF = d(LgF

)
(
F (0)

)
X and YF = d(LgF

)
(
F (0)

)
Y with X and Y ∈ E. However, there is

on the tangent space T FF a Hermitian form in which this dependence of gF does not play a
role anymore. Recall that the product of two Hilbert–Schmidt operators is an operator of trace
class. Then we can define on T FF the form

BF (XF , YF ) := trace(Y ∗X) =
∑
i∈I

trace

(∑
k∈I

(Y ∗)ikXki

)
(23)

=
∑
i∈I

∑
k<i

trace((Y ∗)ikXki) (24)

since Y ∗
ik = 0, unless k < i. The form BF is independent of the choice of gF , since we have

for each u ∈ Ures(H) ∩ P the relation

trace((uYu−1)∗(uXu−1)) = trace(uY∗Xu−1
) = trace(Y ∗X)

and it is clearly Hermitian. Note that this form is constant on F. Thus we have put a Hermitian
structure on T FF . The associated strong Riemannian metric is obtained by taking the real part
of BF

g(XF , YF ) = 1
2 (BF (XF , YF ) + BF (YF ,XF )) (25)

=
∑
i∈I

∑
k<i

1
2 (trace((Y ∗)ikXki) + trace((X∗)ikYki)). (26)

Since BF is Hermitian, its imaginary part defines an antisymmetric form �F on T FF that is
equal to

�(XF , YF ) := g(XF , iYF ) (27)

=
∑
i∈I

∑
k<i

1

2i
(trace((Y ∗)ikXki) − trace((X∗)ikYki)). (28)

The forms �F determine the so-called fundamental 2-form � on F by

�(X1,X2)(F ) := �F ((X1)F , (X2)F )

for all vector fields X1 and X2 on F. It is well known, see e.g. [AMR88], that on a Hilbert
manifold as F the exterior derivative of an k-form ω is well defined and is given by

dω(X0, . . . , Xk) =
k∑

l=O

(−1)lLXl
(ω(X0, . . . , X̂l , . . . , Xk)) (29)

+
∑

o�i<j�k

(−1)i+jω(LXi
(Xj ),X0, . . . , X̂i, . . . , X̂j , . . . , Xk)). (30)

Here X̂i denotes that Xi is deleted. Further, the X0, . . . , Xk are vector fields on F and LXi

denotes the Lie derivative w.r.t. Xi .
The manifold F is called a Kähler manifold if the 2-form � is closed, i.e. d� = 0.

The form � is also called a Kähler form then. Since the 2-form � is constant on F, all
the expressions LXl

(�(Xi,Xj )) in the exterior derivative of � are zero. For the remaining
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expressions in d�, we use again that � is completely determined by �F(0) and obtain then
from (29) the following condition for the closedness of �.

Proposition 6.1. The 2-form � is closed if and only if �F(0) is a Lie algebra 2-cocycle, that is
to say it satisfies for all X,Y and Z ∈ E the relation

�F(0) (X, [Y,Z]) + �F(0) (Y, [Z,X]) + �F(0) (Z, [X,Y ]) = 0. (31)

Note that for M + N = 1, i.e. in the case of the Grassmannian, the commutators in the
cocycle condition are all zero,so that the statement is trivially true. To show that �F(0) possesses
the cocycle property, we prove the relation for X,Y and Z ∈ E equal to any of the basic
operators E(k,i)(l,j) in E and , since they form a Hilbert basis of E, the fact that�F(0) is continuous
gives the general result. Let X = E(k1,i1)(l1,j1), Y = E(k2,i2)(l2,j2) and Z = E(k3,i3)(l3,j3), then
there holds for l = 1, 2 and 3 that il < jl . This restricts the possible outcomes of the
commutator of Y and Z to

[Y,Z] = 0 if (l2, j2) �= (k3, i3) and [Y,Z] = E(k2,i2)(l3,j3) if (l2, j2) = (k3, i3).

If (l2, j2) = (k3, i3), then we get

�F(0) (X, [Y,Z]) = 1

2i
trace

(
E(l3,j3)(k2,i2)E(k1,i1)(l1,j1) − E(l1,j1)(k1,i1)E(k2,i2)(l3,j3)

)
.

For (k2, i2) = (k1, i1), there holds either trace
(
E(l3,j3)(l1,j1)

) = trace
(
E(l1,j1)(l3,j3)

) = 0 or
E(l3,j3)(l1,j1) = E(l1,j1)(l3,j3), so that �F(0) (X, [Y,Z]) = 0 for these X,Y and Z ∈ E. The same
reasoning holds for the other terms and thus we have obtained the final result.

Theorem 6.2. The 2-form � is closed and F is a Kähler manifold.

Since F is modelled on a Hilbert space the 2-form � is a symplectic form. As the
Hermitian structure on T F is invariant under left translations from Ures(H), we see that

Corollary 6.3. The group Ures(H) acts by symplectomorphisms on the symplectic variety F.

This result can be applied at Hamiltonian aspects of KP- and Toda-type integrable systems.
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